Данная рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО) к освоению основной образовательной программы среднего общего образования (ООП СОО) и, в частности, базового уровня курса физики с учетом планируемых учебных результатов, на основе авторской программы (авторы: В.С. Данюшков, О.В. Коршунова) и примерной программы по физике в 10-11 классах. Ориентирована на УМК:

- 1. Учебник для общеобразовательных организаций. Физика 10. Базовый уровень. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Москва «Просвещение». 2016
- 2. Программа 10-11 классы. В. С. Данюшенков, О. В. Коршунова
- 3. Сборник задач по физике 10-11 классы. Н. А. Парфентьева. Москва «Просвещение». 2017
- 4. Сборник задач по физике10 11 классы А. П. Рымкевич. Москва «Дрофа». 2016

Согласно учебному плану образовательного учреждения на изучение физики в 10 классе (базовый уровень) отводится 35 ч (1 ч в неделю, 35 учебных недель).

Рабочая программа содержит:

- 1. Планируемые предметные результаты освоения учебного предмета.
- 2. Содержание учебного предмета
- 3. Календарно-тематическое планирование

1. Планируемые предметные результаты освоения учебного предмета.

В результате изучения учебного предмета «Физика» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих

данную зависимость между величинами, и делать вывод с учетом погрешности измерений;

- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

2. Содержание учебного предмета.

№	Название разделов	Характеристика видов учебной деятельности учащихся
1	Методы научного познания и физическая картина мира - 1 час	
	Физика — наука о природе. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы. Физические теории. Границы применимости физических законов и теорий. Принцип соответствия. Основные элементы физической картины мира.	Формировать умения ставить цели деятельности, планировать собственную деятельность для достижения поставленных целей, развивать способности ясно и четко излагать свои мысли. Производить измерения физических величин. Высказывать гипотезы для наблюдаемых явлений. Предлагать модели явлений. Указывать границы применимости физических законов.
	Лабораторные работы — 0 Контрольные работы — 0	
2	Механика – 13 часов	
	Механическое движение и его виды. Относительность механического движения. Прямолинейное равноускоренное движение. Принцип относительности Галилея. Законы динамики. Всемирное тяготение. Законы сохранения в механике. Предсказательная сила законов классической механики.	Представлять механическое движение тела уравнениями зависимости координат и проекций скорости от времени. Представлять механическое движение тела графиками зависимости координат и проекций скорости от времени. Определять координаты пройденный путь, скорость и ускорение тела по уравнениям зависимости координат и

Использование законов механики объяснения движения небесных тел и для развития космических исследований. Границы классической применимости механики.

Лабораторные работы – 6 Kонтрольные работы -2

проекций скорости от времени. Приобрести опыт работы в группе с выполнением различных социальных ролей. Измерять массу тела. Измерять силы взаимодействия тел. Вычислять значения сил по известным значениям масс взаимодействующих тел и их ускорений. Вычислять значения ускорений тел по известным значениям действующих сил и масс тел. Вычислять значения ускорений тел по известным значениям действующих сил и масс тел. Применять закон всемирного тяготения при расчетах сил ускорений взаимодействующих тел. Измерять взаимодействия силы тел. Вычислять значения сил и ускорений. Применять закон сохранения импульса для вычисления изменений скоростей тел при их взаимодействиях. Вычислять работу сил и изменение кинетической энергии тела. Вычислять потенциальную энергию тел в

гравитационном Находить поле. потенциальную энергию упруго деформированного тела ПО известной деформации и жесткости тела. Применять закон сохранения механической энергии при расчетах результатов взаимодействий тел гравитационными силами силами упругости.

Молекулярная физика – 11 часов

Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Абсолютная температура как кинетической средней энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального Строение и свойства жидкостей и твердых тел.

Законы термодинамики. Порядок и хаос. тепловых Необратимость процессов. Тепловые двигатели и охрана окружающей среды.

Лабораторные работы – 1 Контрольные работы – 1

Выполнять эксперименты, служащие обоснованию молекулярно - кинетической теории. Различать основные признаки моделей строения газов, жидкостей и твердых тел. Решать задачи с применением основного уравнения молекулярно – кинетической теории газов.

Рассчитывать количество теплоты, необходимой для осуществления заданного процесса с теплопередачей. Рассчитывать количество теплоты, необходимой осуществления процесса перехода вещества из одного агрегатного состояния в другое. Рассчитывать изменения внутренней энергии тел, работу в переданное количество теплоты на основании первого закона термодинамики. Объяснять принципы действия тепловых машин. Уметь вести диалог, выслушивать мнение оппонента, участвовать в дискуссиях, открыто выражать и отстаивать свою точку зрения.

Электродинамика – 10 час

Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Разность потенциалов. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники.

Лабораторные работы – 2 Контрольные работы - 1

Вычислять силы взаимодействия точечных электрических зарядов. Вычислять напряженность электрического поля точечного электрического заряда. Вычислять потенциал электрического поля одного и нескольких точечных электрических зарядов. Вычислять энергию поля заряженного конденсатора.

Выполнять расчеты сил токов и напряжений на участках электрических цепей. Измерять мощность электрического тока. Измерять ЭДС и внутреннее сопротивление источника тока.

Использовать знания об электрическом токе в различных средах в повседневной жизни для обеспечения: безопасности при обращении с приборами и техническими устройствами; сохранения здоровья и соблюдения норм экологического поведения

4

		в окружающей среде.
6	1 час- резервное время.	
	Всего- 35 часов	
	Лабораторные работы – 5	
	Контрольные работы – 4 (3 тематических +	
	стартовая)	

Перечень лабораторных работ

№	Тема
1	Изучение движения тела по окружности.
2	Изучение закона сохранения механической энергии
3	Экспериментальная проверка закона Гей-Люссака.
4	Последовательное и параллельное соединения проводников.
5	Измерение ЭДС и внутреннего сопротивления источника тока.

Перечень контрольных работ

№	Тема
1	Стартовая контрольная работа.
2	Основы механики.
3	Молекулярная физика. Термодинамика.
4	Электростатика. Постоянный электрический ток

Календарно-тематическое планирование 10 класс (базовый уровень) 35 часов (1 час в неделю) УМК: Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Учитель: Ю. А. Ткачева

<u>№</u> урока	№ урока	Тема урока	Дата проведения		Домашнее задание
	в четвер ти		По плану	Факт	
1 ч	етверть:	8 часов, контрольные работы - 1	l, лаборат	орные ра	боты - 1
1.	Введение	. Основные особенности физического	о метода и	сследовани	ия (1 ч.)
1/1	1	Физика и познание мира.	06.09		Введение
		2. Механика (27 ч.)		•	
2/1	2	Основные понятия кинематики.	13.09		§ 1, 3
3/2	3	Стартовая контрольная работа.	20.09		Повт. § 1, 3
4/3	4	Равномерное прямолинейное движение.	27.09		§ 4
5/4	5	Прямолинейное равноускренное движение.	04.10		§ 8-10
6/5	6	Равномерное движение по окружности. Кинематика абсолютно твердого тела.	11.10		§ 15, 16
7/6	7	Законы Ньютона.	18.10		§18-21, 24, 25
8/7	8	Лабораторная работа № 1 «Изучение движения тела по окружности».	25.10		Повт. §18- 21, 24, 25
2 1	етверть:		, лаборат	орные раб	боты - 2
9/8	1	Силы в механике.	08.11		§27, 28, 33, 34, 36
10/9	2	Импульс. Закон сохранения импульса.	15.11		§38
11/10	3	Работа. Мощность. Энергия.	22.11		§40, 41, 43- 45
12/11	4	<u>Лабораторная работа №2</u> «Изучение закона сохранения механической энергии».	29.11		Повт. §40, 41, 43-45
13/12	5	Равновесие тел.	06.12		§ 51
14/13	6	Контрольная работа № 21 «Основы механики».	13.12		сообщения
		3. Молекулярная физин	са (11 ч.)		
15/1	7	Основные положения молекулярно-кинетической теории.	20.12		§ 53, 55, 56
16/2	8	Основное уравнение МКТ газов.	27.12		§ 57
3 ч	етверть:	11 часов, контрольные работы -		торные па	боты - 2
17/3	1	Температура. Энергия теплового	10.01		§ 59, 60

		движения молекул.		
18/4	2	Уравнение состояния идеального	17.11	§ 63, 65
	_	газа. Газовые законы.		
19/5	3	Лабораторная работа № 3	24.01	Повт. § 63,
		«Экспериментальная проверка		65
		закона Гей-Люссака».		
20/6	4	Взаимные превращения жидкостей	31.02	§ 68-70
		и газов.		
21/7	5	Кристаллические и аморфные тела.	07.02	§ 72
22/8	6	Основные термодинамические	14.02	§ 73, 74, 76
	_	параметры.		. =
23/9	7	Законы термодинамики.	21.02	§ 78, 81
24/10	8	Тепловые двигатели.	28.02	§ 82
25/11	9	Контрольная работа № 2	07.03	сообщения
		«Молекулярная физика.		
		Термодинамика».		
	1	4. Электродинамика	<u> </u>	
26/1	10	Электрические заряды. Закон	14.03	§ 84, 85
		Кулона.		
27/2	11	Электрическое поле.	21.03	§ 88-90, 92-
				95
	етверть:			
28/3	1	Электроемкость. Конденсатор.	04.04	§ 97, 98
29/4	2	Электрический ток на участке цепи.	11.04	§ 100-102,
				104
30/5	3	Лабораторная работа №4	18.04	Повт. § 100-
		«Последовательное и параллельное		102, 104
		соединения проводников».		
31/6	4	ЭДС. Закон Ома для полной цепи.	25.04	§ 105, 106
32/7	5	<u>Лабораторная работа №5</u>	02.05	Повт. § 105,
		«Измерение ЭДС и внутреннего		106
		сопротивления источника тока».		
33/8	6	Электрический ток в различных	16.05	§ 108-110,
		средах.		112-114
34/9	7	Контрольная работа №3	23.05	
		«Электростатика. Постоянный		сообщения
		электрический ток».		
35/10	8	Резервное время на повторение.	30.05	